有一辆公交车总是在一个固定的路线上行驶,除去起始站和终点站外,中途有8个停车站,如果这辆公交车从起始站开始乘客,不算终点站,每一站上车的乘客中恰好又有一位乘客从这一站到以后的每一站下车。如果你是公交车的车长,为了确保每个乘客都有座位,你至少要安排多少个座位?
正确答案:
由题意可知,这辆公交车从起始站到终点站一共有10个站,在这里用1站10站表示。那么起始站(1站)应该至少上来9个人,才能保证以后的每一站都有人下车;2站应该下1人,上8人;后面的依次类推。
1站:9人
2站:(91)+8=16人
3站:(92)+(81)+7=21人
……
9站:(98)+(87)+(76)+(65)+(54)+(43)+(32)+(21)+1=9
10:全下了。
即:
1站:1*9=9人
2站:2*8=16人
3站:3*7=21人
4站:4*6=24人
5站:5*5=25人
6站:6*4=24人
7站:7*3=21人
8站:8*2=16人
9站:9*1=9人
10站:0人
那么这辆公交车最少要有25个座位。
1站:9人
2站:(91)+8=16人
3站:(92)+(81)+7=21人
……
9站:(98)+(87)+(76)+(65)+(54)+(43)+(32)+(21)+1=9
10:全下了。
即:
1站:1*9=9人
2站:2*8=16人
3站:3*7=21人
4站:4*6=24人
5站:5*5=25人
6站:6*4=24人
7站:7*3=21人
8站:8*2=16人
9站:9*1=9人
10站:0人
那么这辆公交车最少要有25个座位。
答案解析:有
微信扫一扫手机做题