有一对轴交角∑=90°的锥齿轮,已知z1=20,z2=30,模数m=3mm。试求δ1和δ2及da1和da2。
正确答案:
T.gδ1=z1/z2=20/30=0.6666
δ1=33°41′24″
δ2=90°-δ1=90°-33°41′24″=56°18′36″
D.a1=m(z1+2cosδ1)=3(20+2cos33°41′24″)= 3(20+2×0.8321)=64.99mm
D.a2=m(z2+2cosδ2)=3(30+2cos56°18′36″) = 3(30+2×0.5547)=93.33mm
故节锥角δ1=33°41′24″,δ2=56°18′36″;齿顶圆直径da1=64.99mm,da2=93.33mm。
δ1=33°41′24″
δ2=90°-δ1=90°-33°41′24″=56°18′36″
D.a1=m(z1+2cosδ1)=3(20+2cos33°41′24″)= 3(20+2×0.8321)=64.99mm
D.a2=m(z2+2cosδ2)=3(30+2cos56°18′36″) = 3(30+2×0.5547)=93.33mm
故节锥角δ1=33°41′24″,δ2=56°18′36″;齿顶圆直径da1=64.99mm,da2=93.33mm。
答案解析:有
微信扫一扫手机做题