假设X射线机、管电压、管电流、透照布置、X光胶片、增感屏、显影条件及试件均不变。透照厚试件时,原可识别的最小气孔直径为0.7mm,今用铅光阑和屏蔽板减少散射线透照时,为得到同黑度的底片需要2倍的曝光时间,若此时缺陷处于与胶片平行的同一平面上,则可识别的最小气孔直径为多少?设气孔与最小可见对比度△Dmin的关系在d=0.2~1.0mm范围内成反比,又焦点尺寸的影响可忽略不计。
正确答案:设屏蔽前后最小可见孔径d1和d2的最小可见对比度分别为△Dmin1和△Dmin2,则:
△Dmin1/△Dmin2=[-0.434μ1G1σ1d1/(1+n1)]/[-0.434μ2G2σ2d2/(1+n2)],由题意,μ1=μ2,G1=G2,σ1=σ2≈1
故△Dmin1/△Dmin2=d1(1+n2)/d2(1+n1)--(1),又设屏蔽前后同一直径气孔的底片对比度分别为△D1和△D2,则
△D1/△D2=[-0.434μ1G1σ1d1/(1+n1)]/[-0.434μ2G2σ2d2/(1+n2)]=(1+n2)/(1+n1)--(2)
∵△D1/△D2=t1/t2 --(3),由(2),(3)式即得t1/t2=(1+n2)/(1+n1)--(4),又由题意,d1/d2=△Dmin2/△Dmin1 即:△Dmin1/△Dmin2=d2/d1--(5),由(1),(5)式得 d2/d1=d1(1+n2)/d2(1+n1),(d2/d1)2=(1+n2)/(1+n1)
将(4)式代入:(d2/d1)2=t1/t2=1/2
D.2/d1≈0.7
∴d2=0.7d1=0.7*0.7=0.49≈0.5mm
△Dmin1/△Dmin2=[-0.434μ1G1σ1d1/(1+n1)]/[-0.434μ2G2σ2d2/(1+n2)],由题意,μ1=μ2,G1=G2,σ1=σ2≈1
故△Dmin1/△Dmin2=d1(1+n2)/d2(1+n1)--(1),又设屏蔽前后同一直径气孔的底片对比度分别为△D1和△D2,则
△D1/△D2=[-0.434μ1G1σ1d1/(1+n1)]/[-0.434μ2G2σ2d2/(1+n2)]=(1+n2)/(1+n1)--(2)
∵△D1/△D2=t1/t2 --(3),由(2),(3)式即得t1/t2=(1+n2)/(1+n1)--(4),又由题意,d1/d2=△Dmin2/△Dmin1 即:△Dmin1/△Dmin2=d2/d1--(5),由(1),(5)式得 d2/d1=d1(1+n2)/d2(1+n1),(d2/d1)2=(1+n2)/(1+n1)
将(4)式代入:(d2/d1)2=t1/t2=1/2
D.2/d1≈0.7
∴d2=0.7d1=0.7*0.7=0.49≈0.5mm
答案解析:有
微信扫一扫手机做题