具有n个顶点的有向无环图最多有多少条边?
正确答案:
具有n个顶点的有向无环图最多有n×(n—1)/2条边。
这是一个拓扑排序相关的问题。—个有向无环图至少可以排出一个拓扑序列,不妨设这n个顶点排成的拓扑序列为v1,v2,v3,„,vn,那么在这个序列中,每个顶点vi只可能与排在它后面的顶点之间存在着以vi为弧尾的弧,最多有n-i条,因此在整个图中最多有(n-1)+(n-2)+„+2+1=n×(n-1)/2条边。
这是一个拓扑排序相关的问题。—个有向无环图至少可以排出一个拓扑序列,不妨设这n个顶点排成的拓扑序列为v1,v2,v3,„,vn,那么在这个序列中,每个顶点vi只可能与排在它后面的顶点之间存在着以vi为弧尾的弧,最多有n-i条,因此在整个图中最多有(n-1)+(n-2)+„+2+1=n×(n-1)/2条边。
答案解析:有
微信扫一扫手机做题