真核生物三类启动子各有何特点?
正确答案:
真核生物有三种RNA聚合酶:RNA聚合酶I、II、III,分别转录rRNA、mRNA、tRNA和小分子RNA。与之对应,有三种类型的启动子。
类型I:Ⅰ类启动子负责转录编码核糖体RNA的多顺反子转录本。脊椎动物RNA聚合酶I的启动子有两部分组成,包括转录起点附近的核心启动子(core promoter) ,和起点5’上游100bp左右的上游控制元件(upstream control element,UCE)。核心启动子从-45到+20,负责转录的起始。UCE从-180延伸到-107,此区可增加核心元件的转录起始的效率。
R.NA Pol Ⅰ需要2种辅助因子:UBF1(上游结合因子1)是一个单链多肽,它可以和核心区UCE的G.C丰富区结合。SL1因子, SL1含有4个蛋白,其中之一称TATA框结合蛋白(TBP)。SL1本身对这种启动子来说并非是特异的,但一旦UBF1和DNA结合了,那么SL1就可以协同结合在DNA上。当这两个因子都结合上了RNA聚合酶才能和核心启动子结合起始转录。 类型II: RNA聚合酶Ⅱ的启动子RNA聚合酶Ⅱ的启动子有三个保守区: (1)、 TATA框(Hogness框) 中心在-25至-30,长度7bp左右。
碱基频率:T82 A97 A85 A63 (T37 )A83 A50(T37 )(全为A-T,少数含有一个G-C对)。
此序列功能:使DNA双链解开,并决定转录的起点位置,失去TATA框,转录将可能在许多位点上开始。 TATA框的改变或缺失,直接影响DNA与酶的结合程度,会使转录起始点偏移,因此,TATA是绝大多数真核基因正确表达所必需的。
由于RNA聚合酶分子有相对固定的空间结构,同此框的结合位点和转录反应催化位点的距离,决定了起始位点的正确选择。启动子特定序列和酶的正确结构,这两者把酶置于一种正确的构象中,决定了识别的正确性和转录起始的正确性。
(2)、 CAAT框中心在-75处,9bp,共有序列GGT(G)CAATCT 功能:与RNA聚合酶结合。
(3)、 GC框在CAAT框上游,序列GGGCGG,与某些转录因子结合。
CAAT和GC框均为上游序列,对转录的起始频率有较大影响。
类型III :是由不同的转录因子以不同的方法来识别的。5S RNA和tRNA都属于RNA 聚合酶Ⅲ启动子,但它们比较特殊,位于起始位点的下游的转录区内,因此也称为下游启动子(downstream promoter)或基因内启动子(intragenenic promoter)或称为内部控制区(internal control region ,ICR)。snRNA基因的启动子和常见的启动子一样位于起始位点的上游,称为上游启动子(upstream type 0f promoter)。下游启动子又可分为1 型和2型。1型内部启动子含有两个分开的boxA(T G G C N N A G T G G)和boxC(C G G T C G A N N C C)序列。而Ⅱ型内部启动子含有两个分开的boxA和boxB。2型内部启动子中boxA和boxB之间的距离较宽。通常有功能的此类启动子中的两个box就不能紧紧连在一起。在1型内部启动子中(5SRNA基因启动子)TFⅢA结合在C框上,使TFⅢC结合在C框下游。在Ⅱ型内部启动子中TF Ⅲ C的结合使TFⅢ B依次结合在起始位点的近上游。TF Ⅲ B结合在起始位点上并和TF Ⅲ C相连。RNA聚合酶Ⅲ的上游启动子有3个上游元件,这些元件仅在snRNA启动子中被发现,有的SnRNA是由RNA聚合酶Ⅱ转录,有的是由RNA聚合酶Ⅲ转录。这些上游元件在一定程度上和polⅡ的启动子相似。
TATA元件看来和特异的聚合酶结合上游启动子转录起始发生在起始点上游的一个很短的区域中,且含有TATA框。次近端序列元件(proximal sequence element,PSE)和八聚体(OCT)元件的存在大大增加了转录效率,结合在这些元件上的转录因子相互协同作用。TATA元件是供TBP识别的,TBP亚基本身识别DNA序列,其结合的其他蛋白有的可和RNA聚合酶Ⅲ结合,有的对RNA聚合酶Ⅱ特异,这就可以解释为什么RNA聚合酶Ⅲ和这些启动子特异结合。TBP及其结合蛋白的功能是使RNA聚合酶Ⅲ正确地结合在起始位点上。
类型I:Ⅰ类启动子负责转录编码核糖体RNA的多顺反子转录本。脊椎动物RNA聚合酶I的启动子有两部分组成,包括转录起点附近的核心启动子(core promoter) ,和起点5’上游100bp左右的上游控制元件(upstream control element,UCE)。核心启动子从-45到+20,负责转录的起始。UCE从-180延伸到-107,此区可增加核心元件的转录起始的效率。
R.NA Pol Ⅰ需要2种辅助因子:UBF1(上游结合因子1)是一个单链多肽,它可以和核心区UCE的G.C丰富区结合。SL1因子, SL1含有4个蛋白,其中之一称TATA框结合蛋白(TBP)。SL1本身对这种启动子来说并非是特异的,但一旦UBF1和DNA结合了,那么SL1就可以协同结合在DNA上。当这两个因子都结合上了RNA聚合酶才能和核心启动子结合起始转录。 类型II: RNA聚合酶Ⅱ的启动子RNA聚合酶Ⅱ的启动子有三个保守区: (1)、 TATA框(Hogness框) 中心在-25至-30,长度7bp左右。
碱基频率:T82 A97 A85 A63 (T37 )A83 A50(T37 )(全为A-T,少数含有一个G-C对)。
此序列功能:使DNA双链解开,并决定转录的起点位置,失去TATA框,转录将可能在许多位点上开始。 TATA框的改变或缺失,直接影响DNA与酶的结合程度,会使转录起始点偏移,因此,TATA是绝大多数真核基因正确表达所必需的。
由于RNA聚合酶分子有相对固定的空间结构,同此框的结合位点和转录反应催化位点的距离,决定了起始位点的正确选择。启动子特定序列和酶的正确结构,这两者把酶置于一种正确的构象中,决定了识别的正确性和转录起始的正确性。
(2)、 CAAT框中心在-75处,9bp,共有序列GGT(G)CAATCT 功能:与RNA聚合酶结合。
(3)、 GC框在CAAT框上游,序列GGGCGG,与某些转录因子结合。
CAAT和GC框均为上游序列,对转录的起始频率有较大影响。
类型III :是由不同的转录因子以不同的方法来识别的。5S RNA和tRNA都属于RNA 聚合酶Ⅲ启动子,但它们比较特殊,位于起始位点的下游的转录区内,因此也称为下游启动子(downstream promoter)或基因内启动子(intragenenic promoter)或称为内部控制区(internal control region ,ICR)。snRNA基因的启动子和常见的启动子一样位于起始位点的上游,称为上游启动子(upstream type 0f promoter)。下游启动子又可分为1 型和2型。1型内部启动子含有两个分开的boxA(T G G C N N A G T G G)和boxC(C G G T C G A N N C C)序列。而Ⅱ型内部启动子含有两个分开的boxA和boxB。2型内部启动子中boxA和boxB之间的距离较宽。通常有功能的此类启动子中的两个box就不能紧紧连在一起。在1型内部启动子中(5SRNA基因启动子)TFⅢA结合在C框上,使TFⅢC结合在C框下游。在Ⅱ型内部启动子中TF Ⅲ C的结合使TFⅢ B依次结合在起始位点的近上游。TF Ⅲ B结合在起始位点上并和TF Ⅲ C相连。RNA聚合酶Ⅲ的上游启动子有3个上游元件,这些元件仅在snRNA启动子中被发现,有的SnRNA是由RNA聚合酶Ⅱ转录,有的是由RNA聚合酶Ⅲ转录。这些上游元件在一定程度上和polⅡ的启动子相似。
TATA元件看来和特异的聚合酶结合上游启动子转录起始发生在起始点上游的一个很短的区域中,且含有TATA框。次近端序列元件(proximal sequence element,PSE)和八聚体(OCT)元件的存在大大增加了转录效率,结合在这些元件上的转录因子相互协同作用。TATA元件是供TBP识别的,TBP亚基本身识别DNA序列,其结合的其他蛋白有的可和RNA聚合酶Ⅲ结合,有的对RNA聚合酶Ⅱ特异,这就可以解释为什么RNA聚合酶Ⅲ和这些启动子特异结合。TBP及其结合蛋白的功能是使RNA聚合酶Ⅲ正确地结合在起始位点上。
答案解析:有
微信扫一扫手机做题